sample from square aperture to produce diff pattern
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(photon) | :: | this | ||||
type(spectrum_t), | intent(in) | :: | spectrum | |||
type(toml_table), | intent(inout), | optional | :: | dict | ||
type(seq), | intent(inout), | optional | :: | seqs(2) |
subroutine aperture(this, spectrum, dict, seqs) !! sample from square aperture to produce diff pattern !add user defined apwid and F ! add correct normalisation use random, only : ranu, ran2, randint, seq use sim_state_mod, only : state use tomlf, only : toml_table, get_value use constants, only : TWOPI use piecewiseMod class(photon) :: this type(spectrum_t), intent(in) :: spectrum type(toml_table), optional, intent(inout) :: dict type(seq), optional, intent(inout) :: seqs(2) integer :: cell(3) real(kind=wp) :: x1, y1, z1, x2, y2, z2, b, F, apwid, tmp call spectrum%p%sample(this%wavelength, tmp) this%energy = 1._wp this%fact = TWOPI/(this%wavelength) apwid = 200e-6_wp !aperture width b = apwid/2._wp !slit width ! Fresnel number F = 4.95_wp !sample aperture postiion x1 = ranu(-b,b) y1 = ranu(-b,b) z1 = (1._wp/((((F / apwid)**2) / 2._wp)*this%wavelength)) - 0.5_wp x2 = ranu(-0.5_wp, 0.5_wp) y2 = ranu(-0.5_wp, 0.5_wp) z2 = 0.5_wp - (1.e-5_wp*(2._wp*0.5_wp/400._wp)) this%pos%x = x2 this%pos%y = y2 this%pos%z = z2 this%phase = sqrt((x2 - x1)**2 + (y2 - y1)**2 + (z2 - z1)**2) this%nxp = (x2 - x1) / this%phase this%nyp = (y2 - y1) / this%phase this%nzp = -abs((z2 - z1)) / this%phase this%tflag = .false. this%cnts = 0 this%bounces = 0 this%weight = 1.0_wp !scattering stuff - not important this%cost = this%nzp this%sint = sqrt(1._wp - this%cost**2) this%phi = atan2(this%nyp, this%nxp) this%cosp = cos(this%phi) this%sinp = sin(this%phi) ! Linear Grid cell = state%grid%get_voxel(this%pos) this%xcell = cell(1) this%ycell = cell(2) this%zcell = cell(3) end subroutine aperture